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TAGGEDPABSTRACT

Ketamine is considered a dissociative anesthetic medication, and it is commonly administered by a paren-

teral route. It works mainly by blocking the N-methyl-D-aspartate receptor. It inhibits the voltage-gated

Na and K channels and serotonin and dopamine reuptake; also, it affects specific receptors, such as

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and aminobutyric acid A receptors.

Ketamine appears to have particular mechanisms that are potentially involved during analgesic induction,

including enhancing of descending inhibition and antiinflammatory effects. More recently, it has been

shown that ketamine has potential in clinical practice for the management of chronic pain, cognitive func-

tion, depression, acute brain injury, and disorders of the immune system.

� 2018 Elsevier Inc. All rights reserved. � The American Journal of Medicine (2018) 000:1�7
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TAGGEDH1INTRODUCTION TAGGEDEND
TaggedPSince 1970, ketamine has been clinically used as an anes-

thetic medication.1 It is thought to modulate N-methyl-D-

aspartate, a-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid, kainate, and aminobutyric acid-A receptors.1,2

Its ability to inhibit the voltage-gated Na and K channels,

and serotonin and dopamine reuptake might be useful in

some clinical conditions, such as managing chronic pain,

depression, acute brain injury, etc.1,3 Ketamine has been

used in clinical practice in different medical specialties.4,5

It produces a wide variety of pharmacologic effects, includ-

ing sedation, analgesia, bronchodilation, and sympathetic

nervous system stimulation.4,6,7 Anesthesiologists and pain

specialists have begun to use ketamine in subanesthetic

doses for the long-term treatment of chronic refractory

pain, particularly neuropathic pains, such as complex

regional pain syndrome, postherpetic neuralgia and, dia-

betic neuropathic pain.4,8,9
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TaggedPThe pharmacologic and anesthetic properties of keta-

mine have been identified since 1965.10 Ketamine is known

as a dissociative anesthetic agent that produces strong anal-

gesia and amnesia.10,11 In addition, it elicits a variety of

side effects, such as the induction of psychedelic conditions

leading to hallucinations and excitation symptoms.12,13 In

this review, we will discuss the relevant literature on the

potential benefits and risks of ketamine use in pathologic

conditions, including managing chronic pain, cognitive

function, depression, acute brain injury, and immune sys-

tem disorders.
TAGGEDH1PHARMACOLOGY TAGGEDEND
TaggedPKetamine can rapidly pass the blood-brain barrier and

therefore has a quick onset of analgesic effect.14,15 Keta-

mine potentially produces an analgesic effect at several

sites of the nervous system, both centrally and peripher-

ally.16-18 New research shows that ketamine has inhibitory

effects on voltage-gated Na and K channels and serotonin

receptors, and it inhibits dopamine reuptake.19-21 The

mechanism of action of ketamine is thought to involve an

interaction between N-methyl-D-aspartate receptors, the

nitric oxide pathway, and opioid receptors.22,23
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TAGGEDH1CHRONIC PAIN TAGGEDEND
TaggedPKetamine is administered to treat various diseases that

cause chronic refractory pain, particularly those that have a

neuropathic component.24 It has recently been reported that

a low intravenous dose of ketamine produces potent analge-

sia in neuropathic pain conditions, presumably by inhibition
CLINICAL SIGNIFICANCE

TaggedP� Ketamine has a variety of pharmaco-
logic effects including sedation, anal-
gesia, bronchodilation, and nervous
system stimulation.

TaggedP� It is used as an active adjuvant that
prolongs the duration of analgesic
effect of painkillers in pain manage-
ment.

TaggedP� Ketamine is used in clinical practice to
manage major resistant depression,
enhance memory function in
Alzheimer’s patients, and reduce brain
damage after stroke.

TaggedP� Ketamine is clinically used for manag-
ing cognitive function and immune
system disorders.
of the N-methyl-D-aspartate recep-

tor.24 However, it appears that par-

ticular mechanisms are potentially

involved, including enhancing of

the descending inhibition and anti-

inflammatory effects.25 In chronic

pain conditions, prolonged nocicep-

tive stimulation leads to activation

and upregulation of the N-methyl-

D-aspartate receptors at the dorsal

horn synapses, resulting in enhanc-

ing and amplifying pain signals to

the brain.26 This phenomenon

would be a significant factor in the

process of perseverance and even-

tual chronification of pain.27,28

TaggedPMore recently, research has

shown that N-methyl-D-aspartate

receptor antagonists, such as keta-

mine, can halt the excessive barrage

of nociceptive input to the brain and

therefore are possible alternatives

to existing therapies of chronic pain

syndromes.27,29 Also, there are

other effects of ketamine that might
contribute to its analgesic behavior by enhancing the

descending inhibition pathway, especially in patients with

chronic neuropathic pain.29 Indeed, ketamine could prevent

the occurrence of chronic pain conditions, such as that

experienced in the postsurgical period after lower limb

amputation.28 To achieve adequate management of chronic

pain, it is preferred to use a multimodal approach to differ-

ent medications.27,28

TaggedPSeveral clinical studies have reported that using keta-

mine with morphine in the treatment of chronic cancer pain

has reduced morphine consumption with less pain and

fewer adverse effects.27 Ketamine improves the efficacy of

opioid treatment in chronic cancer pain during long-term

management.27 This is because ketamine’s ability to reduce

neuropathic pain is superior to that of opioids, but it can

additively and synergistically interact with opioids, proba-

bly through the descending inhibitory pathway. Some

experimental studies in mice lacking m-opioid receptors

have suggested a crucial role of the m-opioid receptor in

ketamine-induced acute analgesia.27 However, the inhibi-

tory pathway of presynaptic spinal dorsal neurons would

also achieve relieving acute pain.29,30 The activation of N-

methyl-D-aspartate receptor at these presynaptic areas

could lead to the release of excitatory substances, including

glutamate and substance P.27,30
TAGGEDH1COGNITIVE FUNCTION TAGGEDEND
TaggedPAnalysis of cognitive and memory functions during short-

term ketamine infusion has demonstrated impairment of

working memory and reduction in the encoding of informa-

tion into episodic memory.27 In contrast to other amnestic

medications, ketamine impairs semantic memory in some
patients.27 After the termination of

short duration and single ketamine

infusions, memory function reverts

to a healthy state, which possibly

indicates that ketamine-induced

memory loss is self-resolving.27

However, the effects on memory

function from the long-term use of

low-dose ketamine for the treatment

of chronic pain are poorly reported

and, consequently, unknown.27

Nevertheless, a recent clinical study

that examined the safety of high-

dose, long-term ketamine in

patients with complex regional pain

syndrome who received anesthetic

doses over 5 days demonstrated no

severe cognitive defects.27

TaggedPThe use of ketamine for neuro-

protection (either intraoperatively

or in the intensive care unit setting

with adequate neurocognitive or

neuroradiologic follow-up) in clini-

cal studies could support the

hypothesis that ketamine may pro-
tect cognitive function.31 One research group has been par-

ticularly interested in the potential of ketamine’s

neuroprotection mechanism to alleviate postoperative cog-

nitive dysfunction in non-head trauma patients.31 Several

clinical investigations have proven that a single dose of

ketamine (0.5 mg/kg) at induction of anesthesia phase may

be attenuated to postoperative cognitive dysfunction in

patients undergoing cardiac surgery.31 Additionally, they

have demonstrated that ketamine has a potential induction

phase that reduces the incidence of postoperative delirium

from 31% to 3%.31 Thus, these beneficial effects of keta-

mine are thought to contribute to the mitigation of the post-

operative systemic inflammatory response.31

TaggedPOne study, in which patients reached a Ramsay Score

4-5 depth of anesthesia and had ketamine levels of 250-

300 mg/dL for at least 4.5 days (ie, in a medically-

induced coma) reported that deep ketamine therapy was

effective for relief of chronic pain and without harmful

cognitive effects.32 Studies have suggested that ketamine

and other antidepressants mediate glutamate and neuro-

trophic receptors.32 This leads to a stimulation of the

mammalian target of rapamycin pathway in the prefron-

tal cortex, thereby resulting in transient activation of the

downstream effectors, such as 4E-binding protein 1 and

protein S6 kinase.32
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TaggedPSignificantly, the activation of mammalian target of

rapamycin after ketamine administration would potentially

indicate an association between significant deficits in syn-

aptic proteins and dysregulation of the mammalian target

of rapamycin pathway in patients with major depressive

disorder.33,34 Recently, some studies have focused on neu-

roinflammation and oxidative stress mechanisms in major

depression.33,35 For example, an agonist of peroxisome

proliferator-activated receptor-a was reported to inhibit

neuroinflammation and oxidative stress, and it possessed

the antidepressant-like effects of ketamine by preventing

the neuroinflammation of many proteins that are involved

in inflammation-related genes, including chemokines and

interferon-gamma�induced genes.33,36,37
TAGGEDH1DEMENTIA AND ALZHEIMER’S DISEASE TAGGEDEND
TaggedPKetamine is known as a noncompetitive N-methyl-D-

aspartate receptor antagonist.16,38,39 Therefore administra-

tion of ketamine and other N-methyl-D-aspartate receptor

antagonists, such as memantine, is used to improve the

symptoms of Alzheimer’s disease.40 Some studies have

revealed (the excitotoxic hypothesis) that there are glutama-

tergic hyperactivity receptors in Alzheimer’s disease. Neu-

ronal and astroglial glutamate transporter dysfunction in

Alzheimer’s disease may lead to excess glutamate in the

synaptic cleft and excitotoxic neuronal damage.40,41 In

addition, in the hippocampus and the striatum, cholinergic

neurons can control the liberation of acetylcholine.42 Thus,

in the prefrontal cortex, these cholinergic neurons would

be mediated by nicotinic and muscarinic receptors.42,43

Ketamine plays a vital role in the occurrence of psychic

phenomena by a direct inhibiting effect on these

receptors.42,43

TaggedPAdditionally, ketamine may facilitate acetylcholine lib-

eration in the hippocampus because the release of dopamine

has increased.16 Clinically, sufficient concentrations of

ketamine could inhibit acetylcholine liberation by N-

methyl-D-aspartate receptors16 and inhibit nicotinic recep-

tors.44 In addition, it has antagonist activity on muscarinic

receptors.45 The N-methyl-D-aspartate receptor, blocked

by ketamine for concentrations between 2 and 50 mm intra-

muscular, is responsible for ketamine’s most essential phar-

macologic properties.45 Glutamate is the most prevalent

amino acid in the central nervous system (CNS), involving

glutamatergic synapses.45 N-methyl-D-aspartate receptors

are present on nearly all the neural cells of the CNS, partic-

ularly in the structures implicated in nociception, such as

primary afferents or spinal dorsal horn.46 When glutamate

is released in the synaptic cleft, there is an activation of the

postsynaptic ionotropic receptors, which leads to the open-

ing of ion channels and is then responsible for a membrane

depolarization.46

TaggedPOxidative stress and protein damage are the processes

related to the pathogenesis of Alzheimer’s disease.47 The

hippocampus, which is mainly affected by Alzheimer’s dis-

ease, is a significant structure for memory function of
TaggedPhumans and spatial memory of rodents.47 Several studies

have reported that a single subanesthetic dose of ketamine

increases lipid peroxidation and protein damage in the hip-

pocampus.47 It was shown that the hippocampus is involved

in 3 stages of the memory mechanism: acquisition, consoli-

dation, and retrieval.47 Therefore, considering ketamine-

induced protein damage in the hippocampus, as well as its

antagonism effect of N-methyl-D-aspartate receptors, a

study in mice was conducted to assess the impact of a suba-

nesthetic dose of ketamine on those 3 stages.48 The results

showed that pretraining administration of a subanesthetic

dose of ketamine deteriorates learning, and preprobe

administration of ketamine impaired performance in the

probe trial.47,48 However, post-training administration of

ketamine did not affect the animals’ performance. The

study shows that subanesthetic ketamine could affect mem-

ory acquisition and retrieval but does not reduce memory

consolidation.47,48
TAGGEDH1DEPRESSION TAGGEDEND
TaggedPAntidepressant actions in animal models have been demon-

strated with ketamine, as have rapid antidepressant effects

in human studies.49,50 Ketamine is a high-affinity N-

methyl-D-aspartate receptor antagonist, which also binds to

opioid m and sigma receptors.51 Ketamine was reported to

regulate dopamine transmission and reuptake.52,53 Treat-

ment-resistant depression affects more than 1% of individu-

als in the United States and nearly 30% of all depressed

patients.54 Ketamine has active and rapid antidepressant

properties, so it is suggested for treatment-resistant depres-

sion (TRD).54 Ketamine may be considered as a novel phar-

macologic medication for managing both major depressive

disorder and TRD patients.55 Ketamine’s action is rapid in

contrast to the delayed response of the currently available

antidepressant agents, which require several weeks to pro-

duce an effect.55,56

TaggedPSeveral studies have provided highly valuable insight

into the neural systems involved in the antidepressant

effects of ketamine.57 Indeed, the long-term beneficial

actions of ketamine on depressive symptoms are noticeable;

however, there is no current research available for address-

ing the long-term effect of a single-injection of ketamine

on brain circuitry in major depressive disorder.57 To under-

stand the vital role of the brain reward system in the patho-

physiology of the major depressive disorder, we need to

produce genetic evidence that suggests brain-derived neu-

rotrophic factor (BDNF) plays a crucial role in this pro-

cess.57 However, the downstream signaling pathways,

which mediate the actions of this neurotrophin, have been

identified.57 A significant amount of experimental data

demonstrates that ketamine can interact with most cellular

signaling pathways involved in major depressive disor-

der.57,58 The antidepressant behavioral effects of ketamine

were inhibited in conditional BDNF deletion mutant mice,

as well as after the infusion of a function-blocking anti-

BDNF antibody into the prefrontal cortex.51,58,59
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TaggedPKetamine has demonstrated antidepressant effects in

patients with major depressive disorder, and its results have

been reported in several studies for TRD.60 Preclinical stud-

ies have shown that ketamine has antidepressant effects in

some animal models of depression by expressing serine/

threonine protein kinase.60 This is called the mammalian

target of rapamycin, which modulates cell growth, prolifer-

ation, motility, survival, and protein synthesis.60 These

observations have provided a mechanistic explanation of

how decreased levels of BDNF and downstream mechanis-

tic target of rapamycin complex 1 signaling, associated

with depressive symptoms could be reversed via rapid-act-

ing antidepressants, such as ketamine (Figure).57

TaggedPPharmacologically, several studies that determine the con-

centration and administration’s speed-dependent effects of

ketamine in depression are needed.61 Recently, one study sug-

gested that the results of ketamine on mood are dose-depen-

dent.61 The investigators have recently compared the effects

of 0.1-0.4 mg/kg of ketamine in patients with major depressive

disorder and found that vast improvements were achieved at

the highest dose level.62 In addition, recent data suggest that

the effectiveness of ketamine in reducing suicidality and in

alleviating posttraumatic stress disorder symptoms might also

extend in parallel with its antidepressant effects.62
Figure This figure shows the ketamine antidepressant action

by stimulating and blocking mechanisms in neuroreceptors in

animal models.

AKT=Alpha serine/threonine-protein kinase; AMPA=A-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF=

Brain-derived neurotrophic factor; eEF2K=Eukaryotic elonga-

tion factor-2 kinase; eEF2 = Eukaryotic elongation factor-2;

ERK=Extracellular signal�regulated kinases; GABA=Gamma-

aminobutyric acid; GSK =Glycogen synthase kinase; HNK=

Hydroxynorketamine; mTOR=Mammalian target of rapamycin;

NMDA=N-methyl-D-aspartate; p-eEF2 = Phosphorylated Eukary-

otic elongation factor-2; TrKB=Tropomyosin receptor kinase B.

Source: Vutskits L. General anesthetics to treat major depres-

sive disorder: clinical relevance and underlying mechanisms.

Anesth Analg. 2018;126(1):208�16.
TAGGEDH1ACUTE BRAIN INJURY TAGGEDEND
TaggedPThe occurrence of traumatic brain injury is high; incidence is

increased in developing countries and exceeds that of the

developed world.63 Therapeutic strategy for reducing trau-

matic brain injury or stroke after ischemia or trauma is well

defined.63 The treatment is aimed at alleviating secondary

damage, which occurs within hours to days after an acute

brain insult.63 Neuroscientists and clinicians have struggled to

identify the cause and consequences of this secondary dam-

age.64 Successful treatment of stroke and diffuse brain injury

lies in understanding the complexity of the processes involved

in perpetuating subsequent cell death, which requires a com-

pound capable of mitigating each of these processes.64

TaggedPThere was some concern regarding the use of ketamine in

the neurosurgical and acute brain injury populations due to

adverse effects, because it might increase intracranial pres-

sure.64 More recently, reevaluation of the medication has

shown this to be incorrect, particularly in patients on mechan-

ical ventilation.64,65 In 1996, ketamine was shown to reduce

cell injury in axotomy of peripheral neurons and motoneurons

in cell cultures.66 This resulted in improving neuronal sur-

vival, by using experimental animal models of stroke and

brain trauma to reduce neuronal discharge and damage as

seen in status epilepticus.67-69 Many studies have shown that

using ketamine leads to minimized focal ischemia size and

decreased volume of hemorrhagic necrosis in experimental

head injury models.66,67,70 These preclinical investigations

have determined that ketamine provides histopathologic and

physiological neuroprotection across extended arrangements

of acute neuroinjury models.70

TaggedPAdditionally, research has shown that ketamine has a

potent extrasynaptic antagonistic effect, extensively inhibit-

ing stimulation of the selectively neurotoxic NR2B-con-

taining N-methyl-D-aspartate receptors.34,71 Ketamine has

antiglutamatergic impacts that might have a role in the

management of delayed cerebral ischemia after subarach-

noid hemorrhage and cerebral vasospasm.72,73 Therefore,

ketamine may play a profound role in the reduction of glu-

tamate-induced cell death.
TAGGEDH1IMMUNE SYSTEM TAGGEDEND
TaggedPKetamine reduces tissue necrosis factor a, interleukins, and

nitric oxide production, all of which play vital roles during

the inflammatory process, and the inhibition of these activi-

ties could affect macrophage-mediated immunity.74 The

potential mechanism of ketamine-induced immunosuppres-

sion was studied to evaluate effects in macrophages, tissue

necrosis factor a, interleukin-1b, and interleukin-6 messen-

ger ribonucleic acid syntheses, and it was found that keta-

mine inhibited messenger ribonucleic acid syntheses by

lipopolysaccharide-activated macrophages.74 Ketamine has

recently been used as an antiinflammatory drug, which

emphasizes the significance of research on its interactions

with the immune system.74 Indeed, major surgery or sepsis

leads to the release of proinflammatory mediators, includ-

ing large amounts of cytokines, which can lead to
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TaggedPundesirable effects, such as low blood pressure and multiple

organ failures.30,74

TaggedPMoreover, ketamine has a double effect that connects

both the analgesic and neuroprotective actions of its antiin-

flammatory effects; ketamine regulates the inhibition of

tumor necrosis factor a, interleukin-6, and proinflammatory

cytokine activities that would occur in both peripheral

immune cells and glial cells in the CNS.37,75 The primary

protective inflammatory mechanism in the CNS in defense

of brain injury is often rapidly deregulated in a cerebrovas-

cular accident.74 For example, in stroke, as a result of

excessive microglial activation with release of tissue necro-

sis factor a that leads to stimulation of the extrinsic apopto-

tic pathway, as well as interleukin-1b, interleukin-8, and

interleukin-6.74,76 This, in turn, might lead to enhance

blood-brain barrier permeability, a process that allows

inflammatory cells, such as monocytes, neutrophils, and

lymphocytes to cross the blood-brain barrier into the

CNS.74,76,77

TaggedPMore recently shown in the antiinflammatory mecha-

nism of ketamine is the inhibition of high mobility group

box 1�induced activation of endothelial cells.78,79 High

mobility group box 1 is considered the main prototype of

the emerging injury-associated molecular proteins and indi-

cator of host tissue damage.80,81 The proinflammatory cyto-

kine is released from endothelial cells, as well as leukocyte

adhesion and transmigration; thus elevated high mobility

group box 1 levels could predict nonsurvivors in subarach-

noid hemorrhage, which may be countered by improving

neuroinflammation in subarachnoid hemorrhage.82,83 Keta-

mine was shown to have an excessive inhibitory effect on

high mobility group box 1�induced endothelial cell activa-

tion by a mechanism involving nuclear factor kB and toll-

like receptor.79,82,84
TAGGEDH1CONCLUSION TAGGEDEND
TaggedPMuch research has been conducted on ketamine’s mecha-

nisms of action; specifically those related to its antidepres-

sive effects, antiinflammatory effects, and chronic pain

management and cognitive function. Further study is

needed for testing long-term efficacy and safety of keta-

mine in nonanesthetic clinical practice for managing major

resistant depression, enhancing memory function in

Alzheimer’s patients, and reducing brain damage after

stroke. This review provides evidence of the medical bene-

fits of the nonanesthetic effects of ketamine, as well as sup-

porting evidence of the effectiveness and tolerability of

ketamine for managing chronic pain conditions.
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